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ABSTRACT

Despite the ability to produce human-level speech for in-domain
text, attention-based end-to-end text-to-speech (TTS) systems suf-
fer from text alignment failures that increase in frequency for out-
of-domain text. We show that these failures can be addressed us-
ing simple location-relative attention mechanisms that do away with
content-based query/key comparisons. We compare two families of
attention mechanisms: location-relative GMM-based mechanisms
and additive energy-based mechanisms. We suggest simple modi-
fications to GMM-based attention that allow it to align quickly and
consistently during training, and introduce a new location-relative
attention mechanism to the additive energy-based family, called Dy-
namic Convolution Attention (DCA). We compare the various mech-
anisms in terms of alignment speed and consistency during training,
naturalness, and ability to generalize to long utterances, and con-
clude that GMM attention and DCA can generalize to very long
utterances, while preserving naturalness for shorter, in-domain ut-
terances.

Index Terms— Speech synthesis, attention, sequence-to-
sequence models

1. INTRODUCTION

Sequence-to-sequence models that use an attention mechanism to
align the input and output sequences [1, 2] are currently the predom-
inant paradigm in end-to-end TTS. Approaches based on the seminal
Tacotron system [3] have demonstrated naturalness that rivals that
of human speech for certain domains [4]. Despite these successes,
there are sometimes complaints of a lack of robustness in the align-
ment procedure that leads to missing or repeating words, incomplete
synthesis, or an inability to generalize to longer utterances [5, 6, 7].

The original Tacotron system [3] used the content-based atten-
tion mechanism introduced in [2] to align the target text with the
output spectrogram. This mechanism is purely content-based and
does not exploit the monotonicity and locality properties of TTS
alignment, making it one of the least stable choices. The Tacotron 2
system [4] used the improved hybrid location-sensitive mechanism
from [8] that combines content-based and location-based features,
allowing generalization to utterances longer than those seen during
training.

The hybrid mechanism still has occasional alignment issues
which led a number of authors to develop attention mechanisms that
directly exploit monotonicity [9, 5, 6]. These monotonic alignment
mechanisms have demonstrated properties like increased alignment
speed during training, improved stability, enhanced naturalness, and
a virtual elimination of synthesis errors. Downsides of these meth-
ods include decreased efficiency due to a reliance on recursion to

marginalize over possible alignments, the necessity of training hacks
to ensure learning doesn’t stall or become unstable, and decreased
quality when operating in a more efficient hard alignment mode
during inference.

Separately, some authors [10] have moved back toward the
purely location-based GMM attention introduced by Graves in [1],
and some have proposed stabilizing GMM attention by using soft-
plus nonlinearities in place of the exponential function [11, 12].
However, there has been no systematic comparison of these design
choices.

In this paper, we compare the content-based and location-
sensitive mechanisms used in Tacotron 1 and 2 with a variety of
simple location-relative mechanisms in terms of alignment speed
and consistency, naturalness of the synthesized speech, and ability
to generalize to long utterances. We show that GMM-based mecha-
nisms are able to generalize to very long (potentially infinite-length)
utterances, and we introduce simple modifications that result in
improved speed and consistency of alignment during training. We
also introduce a new location-relative mechanism called Dynamic
Convolution Attention that modifies the hybrid location-sensitive
mechanism from Tacotron 2 to be purely location-based, allowing it
to generalize to very long utterances as well.

2. TWO FAMILIES OF ATTENTION MECHANISMS

2.1. Basic Setup

The system that we use in this paper is based on the original Tacotron
system [3] with architectural modifications from the baseline model
detailed in the appendix of [12]. We use the CBHG encoder from [3]
to produce a sequence of encoder outputs, {hj}Lj=1, from a length-
L input sequence of target phonemes, {xj}Lj=1. Then an attention
RNN, (2), produces a sequence of states, {si}Ti=1, that the atten-
tion mechanism uses to compute αi, the alignment at decoder step
i. Additional arguments to the attention function in (3) depend on
the specific attention mechanism (e.g., whether it is content-based,
location-based, or both). The context vector, ci, that is fed to the
decoder RNN is computed using the alignment, αi, to produce a
weighted average of encoder states. The decoder is fed both the con-
text vector and the current attention RNN state, and an output func-
tion produces the decoder output, yi, from the decoder RNN state,
di.

{hj}Lj=1 = Encoder({xj}Lj=1) (1)
si = RNNAtt(si−1, ci−1,yi−1) (2)

αi = Attention(si, . . . ) ci =
∑
j

αi,jhj (3)

di = RNNDec(di−1, ci, si) yi = fo(di) (4)
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2.2. GMM-Based Mechanisms

An early sequence-to-sequence attention mechanism was proposed
by Graves in [1]. This approach is a purely location-based mecha-
nism that uses an unnormalized mixture of K Gaussians to produce
the attention weights, αi, for each encoder state. The general form
of this type of attention is shown in (5), where wi, Zi, ∆i, and
σi are computed from the attention RNN state. The mean of each
Gaussian component is computed using the recurrence relation in
(6), which makes the mechanism location-relative and potentially
monotonic if ∆i is constrained to be positive.

αi,j =

K∑
k=1

wi,k

Zi,k
exp

(
− (j − µi,k)

2

2(σi,k)2

)
(5)

µi = µi−1 + ∆i (6)

In order to compute the mixture parameters, intermediate parame-
ters (ŵi, ∆̂i, σ̂i) are first computed using the MLP in (7) and then
converted to the final parameters using the expressions in Table 1.

(ŵi, ∆̂i, σ̂i) = V tanh(Wsi + b) (7)

The version 0 (V0) row in Table 1 corresponds to the original mecha-
nism proposed in [1]. V1 adds normalization of the mixture weights
and components and uses the exponential function to compute the
mean offset and variance. V2 uses the softplus function to compute
the mean offset and standard deviation.

Another modification we test is the addition of initial biases to
the intermediate parameters ∆̂i and σ̂i in order to encourage the
final parameters ∆i and σi to take on useful values at initialization.
In our experiments, we test versions of V1 and V2 GMM attention
that use biases that target a value of ∆i = 1 for the initial forward
movement andσi = 10 for the initial standard deviation (taking into
account the different nonlinearities used to compute the parameters).

Table 1. Conversion of intermediate parameters computed in (7) to
final mixture parameters for the three tested GMM-based attention
mechanisms. Smax(·) is the softmax function, while S+(·) is the soft-
plus function.

Zi wi ∆i σi

V0 [1] 1 exp(ŵi) exp(∆̂i)
√

exp(−σ̂i)/2

V1
√

2πσ2
i Smax(ŵi) exp(∆̂i)

√
exp(σ̂i)

V2
√

2πσ2
i Smax(ŵi) S+(∆̂i) S+(σ̂i)

2.3. Additive Energy-Based Mechanisms

A separate family of attention mechanisms use an MLP to compute
attention energies, ei, that are converted to attention weights, αi,
using the softmax function. This family includes the content-based
mechanism introduced in [2] and the hybrid location-sensitive mech-
anism from [8]. A generalized formulation of this family is shown
in (8).

ei,j = vᵀ tanh(Wsi + V hj + Ufi,j + Tgi,j + b) + pi,j (8)
αi = Smax(ei) (9)
fi = F ∗αi−1 (10)
gi = G(si) ∗αi−1, G(si) = VG tanh(WGsi + bG) (11)
pi = log(P ∗αi−1) (12)

Here we see the content-based terms, Wsi and V hj , that repre-
sent query/key comparisons and the location-sensitive term, Ufi,j ,
that uses convolutional features computed from the previous atten-
tion weights as in (10) [8]. Also present are two new terms, Tgi,j
and pi,j , that are unique to our proposed Dynamic Convolution At-
tention. The Tgi,j term is very similar to Ufi,j except that it uses
dynamic filters that are computed from the current attention RNN
state as in (11). The pi,j term is the output of a fixed prior filter
that biases the mechanism to favor certain types of alignment. Ta-
ble 2 shows which of the terms are present in the three energy-based
mechanisms we compare in this paper.

Table 2. The terms from (8) that are present in each of the three
energy-based attention mechanisms we test.

Wsi V hj Ufi,j Tgi,j pi,j

Content-Based [2] 3 3 - - -
Location-Sensitive [8] 3 3 3 - -
Dynamic Convolution - - 3 3 3

2.4. Dynamic Convolution Attention

In designing Dynamic Convolution Attention (DCA), we were moti-
vated by location-relative mechanisms like GMM attention, but de-
sired fully normalized attention weights. Despite the fact that GMM
attention V1 and V2 use normalized mixture weights and compo-
nents, the attention weights still end up unnormalized because they
are sampled from a continuous probability density function. This can
lead to occasional spikes or dropouts in the alignment, and attempt-
ing to directly normalize GMM attention weights results in unstable
training. Attention normalization isn’t a significant problem in fine-
grained output-to-text alignment, but becomes more of an issue for
coarser-grained alignment tasks where the attention window needs
to gradually move to the next index (for example in variable-length
prosody transfer applications [13]). Because DCA is in the energy-
based attention family, it is normalized by default and should work
well for a variety of monotonic alignment tasks.

Another issue with GMM attention is that because it uses a mix-
ture of distributions with infinite support, it isn’t necessarily mono-
tonic. At any time, the mechanism could choose to emphasize a
component whose mean is at an earlier point in the sequence, or it
could expand the variance of a component to look backward in time,
potentially hurting alignment stability.

To address monotonicity issues, we make modifications to the
hybrid location-sensitive mechanism. First we remove the content-
based terms, Wsi and Whi, which prevents the alignment from
moving backward due to a query/key match at a past timestep. Do-
ing this prevents the mechanism from adjusting its alignment trajec-
tory as it is only left with a set of static filters, Ufi,j , that learn to
bias the alignment to move forward by a certain fixed amount. To
remedy this, we add a set of learned dynamic filters, Tgi,j , that are
computed from the attention RNN state as in (11). These filters serve
to dynamically adjust the alignment relative to the alignment at the
previous step.

In order to prevent the dynamic filters from moving things back-
ward, we use a single fixed prior filter to bias the alignment toward
short forward steps. Unlike the static and dynamic filters, the prior
filter is a causal filter that only allows forward progression of the
alignment. In order to enforce the monotonicity constraint, the out-
put of the filter is converted to the logit domain via the log function



before being added to the energy function in (8) (we also floor the
prior logits at −106 to prevent underflow).

We set the taps of the prior filter using values from the beta-
binomial distribution, which is a two-parameter discrete distribution
with finite support.

p(k) =

(
n

k

)
B(k + α, n− k + β)

B(α, β)
, k ∈ {0, . . . , n} (13)

where B(·) is the beta function. For our experiments we use the pa-
rameters α = 0.1 and β = 0.9 to set the taps on a length-11 prior
filter (n = 10). Repeated application of the prior filter encourages
an average forward movement of 1 encoder step per decoder step
(E[k] = αn/(α + β)) with the uncertainty in the prior alignment
increasing after each step. The prior parameters could be tailored to
reflect the phonemic rate of each dataset in order to optimize align-
ment speed during training, but for simplicity we use the same val-
ues for all experiments. Figure 1 shows the prior filter along with the
alignment weights every 20 decoder steps when ignoring the contri-
bution from other terms in (8).

0.0

0.5 Prior filter

0

1 0 steps

0.000

0.025
20 steps

0.000

0.025 40 steps

0.00

0.02 60 steps

0 20 40 60 80 100 120
Encoder Steps

0.00

0.02 80 steps

Initial Alignment Via Repeated Application of Prior Filter

Fig. 1. Initial alignment encouraged by the prior filter (ignoring the
contribution of other term in (8)). The attention weights are shown
every 20 decoders steps with the prior filter itself shown at the top.

3. EXPERIMENTS

3.1. Experiment Setup

In our experiments we compare the GMM and additive energy-based
families of attention mechanisms enumerated in Tables 1 and 2. We
use the Tacotron architecture described in Section 2.1 and only vary
the attention function used to compute the attention weights,αi. The
decoder produces two 128-bin, 12.5ms-hop mel spectrogram frames
per step. We train each model using the Adam optimizer for 300,000
steps with a gradient clipping threshold of 5 and a batch size of 256,
spread across 32 Google Cloud TPU cores. We use an initial learning
rate of 10−3 that is reduced to 5 × 10−4, 3 × 10−4, 10−4, and
5×10−5 at 50k, 100k, 150k, and 200k steps, respectively. To convert
the mel spectrograms produced by the models into audio samples,
we use a separately-trained WaveRNN [14] for each speaker.

For all attention mechanisms, we use a size of 128 for all tanh
hidden layers. For the GMM mechanisms, we use K = 5 mixture
components. For location-sensitive attention (LSA), we use 32 static
filters, each of length 31. For DCA, we use 8 static filters and 8
dynamic filters (all of length 21), and a length-11 causal prior filter
as described in Section 2.4.

We run experiments using two different single-speaker datasets.
The first (which we refer to as the Lessac dataset) comprises audio-
book recordings from Catherine Byers, the speaker from the 2013
Blizzard Challenge. For this dataset, we train on a 49,852-utterance
(37-hour) subset, consisting of utterances up to 5 seconds long, and
evaluate on a separate 935-utterance subset. The second is the LJ
Speech dataset [15], a public dataset consisting of audiobook record-
ings that are segmented into utterances of up to 10 seconds. We train
on a 12,764-utterance subset (23 hours) and evaluate on a separate
130-utterance subset.

3.2. Alignment Speed and Consistency

To test the alignment speed and consistency of the various mecha-
nisms, we run 10 identical trials of 10,000 training steps and plot the
MCD-DTW between a ground truth holdout set and the output of
the model during training. The MCD-DTW is an objective similar-
ity metric that uses dynamic time warping (DTW) to find the min-
imum mel cepstral distortion (MCD) [16] between two sequences.
The faster a model is able to align with the text, the faster it will
start producing reasonable spectrograms that produce a lower MCD-
DTW.
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Fig. 2. Alignment trials for 8 different mechanisms (10 runs each)
trained on the Lessac (top) and LJ (bottom) datasets. The validation
set MCD-DTW drops down after alignment has occurred.

Figure 2 shows these trials for 8 different mechanisms for both
the Lessac and LJ datasets. Content-based (CBA), location-sensitive
(LSA), and DCA are the three energy-based mechanisms from Ta-
ble 2, and the 3 GMM varieties are shown in Table 1. We also test
the V1 and V2 GMM mechanisms with an initial parameter bias as
described in Section 2.2 (abbreviated as GMMv1b and GMMv2b).

Looking at the plots for the Lessac dataset (top of Figure 2), we
see that the mechanisms on the top row (the energy-based family and
GMMv2b) all align consistently, with DCA and GMMv2b aligning
the fastest. The GMM mechanisms on the bottom row don’t fare



as well, and while they typically align more often than not, there
are a significant number of failures or cases of delayed alignment.
It’s interesting to note that adding a bias to the GMMv1 mechanism
actually hurts its consistency while adding a bias to GMMv2 helps
it.

Looking at the plots for the LJ dataset at the bottom of Figure 2,
we first see that the dataset is more difficult in terms of alignment.
This is likely due to the higher maximum and average length of the
utterances in the training data (most utterances in the LJ dataset are
longer than 5 seconds) but could also be caused by an increased pres-
ence of intra-utterance pauses and overall lower audio quality. Here,
the top row doesn’t fare as well: CBA has trouble aligning within
the first 10k steps, while DCA and GMMv2b both fail to align once.
LSA succeeds on all 10 trials but tends to align more slowly than
DCA and GMMv2b when they succeed. With these consistency re-
sults in mind, we will only be testing the top row of mechanisms in
subsequent evaluations.

3.3. In-Domain Naturalness

We evaluate CBA, LSA, DCA, and GMMv2b using mean opinion
score (MOS) naturalness judgments produced by a crowd-sourced
pool of raters. Scores range from 1 to 5, with 5 representing “com-
pletely natural speech”. The Lessac and LJ models are evaluated on
their respective test sets (hence in-domain), and the results are shown
in Table 3. We see that for these utterances, the LSA, DCA, and
GMMV2b mechanisms all produce equivalent scores around 4.3,
while the content-based mechanism is a bit lower due to occasional
catastrophic attention failures.

Table 3. MOS naturalness results along with 95% confidence inter-
vals for the Lessac and LJ datasets.

Lessac LJ

Content-Based 4.07 ± 0.08 4.19 ± 0.06
Location-Sensitive 4.31 ± 0.06 4.34 ± 0.06
GMMv2b 4.32 ± 0.06 4.29 ± 0.06
DCA 4.31 ± 0.06 4.33 ± 0.06
Ground Truth 4.64 ± 0.04 4.55 ± 0.04

3.4. Generalization to Long Utterances

Now we evaluate our models on long utterances taken from two
chapters of the Harry Potter novels. We use 1034 utterances that vary
between 58 and 1648 characters (10 and 299 words). Google Cloud
Speech-To-Text1 is used to produce transcripts of the resulting audio
output, and we compute the character errors rate (CER) between the
produced transcripts and the target transcripts. Figure 3 shows the
CER results as a function of utterance length for the Lessac mod-
els (trained on up to 5 second utterances) and LJ models (trained
on up to 10 second utterances). The plots show that CBA fares the
worst, with the CER shooting up when the test length exceeds the
max training length. LSA shoots up soon after at around 3x the max
training length, while the two location-relative mechanisms, DCA
and GMMv2b, are both able to generalize to the whole range of ut-
terance lengths tested.

1https://cloud.google.com/speech-to-text
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Fig. 3. Utterance length robustness for models trained on the Lessac
(top) and LJ (bottom) datasets.

4. DISCUSSION

We have shown that Dynamic Convolution Attention (DCA) and V2
GMM attention with initial bias (GMMv2b) are able to generalize to
utterances much longer than those seen during training, while pre-
serving naturalness on shorter utterances. This opens the door for
synthesis of entire paragraphs or long sentences (e.g., for book or
news reading applications), which can improve naturalness and con-
tinuity compared to synthesizing each sentence or clause separately
and then stitching them together.

These two location-relative mechanisms are simple to imple-
ment and do not rely on dynamic programming to marginalize over
alignments. They also tend to align very quickly during training,
which makes the occasional alignment failure easy to detect so train-
ing can be restarted. In our alignment trials, despite being slower to
align on average, LSA seemed to have an edge in terms of align-
ment consistency; however, we have noticed that slower alignment
can sometimes lead to worse quality models, probably because the
other model components are being optimized in an unaligned state
for longer.

Compared to GMMv2b, DCA can more easily bound its recep-
tive field (because its prior filter numerically disallows backward or
excessive forward movement), which makes it easier to incorporate
hard windowing optimizations in production. Another advantage of
DCA over GMM attention is that its attention weights are normal-
ized, which helps to stabilize the alignment, especially for coarse-
grained alignment tasks.

For monotonic alignment tasks like TTS and speech recogni-
tion, location-relative attention mechanisms have many advantages
and warrant increased consideration and further study. Supplemental
materials, including audio examples, are available on the web2.

2https://google.github.io/tacotron/publications/
location_relative_attention

https://cloud.google.com/speech-to-text
https://google.github.io/tacotron/publications/location_relative_attention
https://google.github.io/tacotron/publications/location_relative_attention
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